AGAVACEAE Part Two: *Hesperoyucca* (Engelm.) Baker

Wendy C. Hodgson
(whodgson@dbg.org)

and Andrew Salywon
(asalywon@dbg.org)

Desert Botanical Garden
1201 N. Galvin Parkway
Phoenix, AZ 85008, U.S.A.

Hesperoyucca (Engelm.) Baker
Our Lord’s Candle, Lechuguilla, Quixote

Plants perennial, with long-lived fibrous leaves arranged in basal rosettes, monocarpic with rosettes solitary, or plants polycarpic with multiple rosettes, forming small to large colonies via offsets, the individual rosettes dying after flowering, erect, acaulescent, scapose. LEAVES sessile, linear, rarely narrowly lanceolate, glaucous, blue-gray or green, rigid at maturity; margins mostly denticulate, corneous, pale yellow, the apex spinose. SCAPE tall, extending well beyond leaves, bracteate. INFLORESCENCES terminal congested panicles, bracteate, glabrous; rachis and peduncle reddish purple; bracts usually reflexed, deltoid. FLOWERS bisexual; perianth campanulate or globose; tepals six, distinct most of length, white or cream-white to greenish or purple-tinged, broadly lanceolate; stamens 6, the filaments thick, white to cream-white, papillose, the anthers terminal, reniform, yellow, with tufted pubescence, the pollen within a glutinous matrix; ovary superior, 3-loculed, placentation axile; style white; stigmas green, capitulate, fringed with transparent, sticky papillae. FRUITS erect, capsular, narrowly to broadly obovoid (to ovate) or oblong-cylindric, symmetrical or constricted, loculicidal, puberulent, the epidermis somewhat resinous, smooth to verrucose. SEEDS many per locule, dull black, obovate, thin, flattened, tightly packed vertically. \(n = 30 \) (5 large, 25 small). — 3 species.; sw U.S., Baja C., Baja C. Sur and n Son., Mex.

Hesperoyucca newberryi (McKelvey) Clary (for John Newberry, American physician, naturalist, explorer, first geologist to visit Grand Canyon and first person to document the species with an herbarium specimen). — Plants monocarpic, the plant dying upon flowering, the rosettes single. LEAVES 37–60 cm long, 0.75–2.5 cm wide at base, rhombus-shaped in cross section, gray-green. SCAPE 1.25–3 m long, 6-10 cm diam. at ca 1.4 m from base of plant. INFLORESCENCES 1, 1.4–1.6 m high, 0.4–0.55 m at widest point, the inflorescence ½–3/4 length of scape, the lateral branches ascending in flower, often becoming pendulous in fruit. FLOWERS 34–70 mm long, 26–36 mm wide when fresh, the tepals cream, often with slight lavender purple flush distally, fused basally 3.5–5 mm, the outer tepals 30–63 mm long, 14–24 mm wide, the inner tepals 33–57 mm long, 15–26 mm wide; filaments 6–10.5 long, 2.4–4 mm wide, basally fused with tepals 4–6 mm, cream-white; ovary 10–14 mm long, 7–11.5 mm wide, white; style 1-2.1 mm long; stigma 2–5 mm high. FRUITS (20–)29–44 mm long, (14–)22–41 mm wide, ovoid to ovoid-cylindric, symmetrical or somewhat constricted near middle, smooth to roughly verrucose, the locule 20–38 mm long, 9–17 mm wide, greenish-tan to light brown, becoming dark brown with maturity, the placental wings inconspicuous to moderately formed. SEEDS 6–9.0 mm long, 5–8.0 mm wide. [{*Yucca newberryi*}](#)
VASCULAR PLANTS OF ARIZONA

McKelvey].— Desert, rocky granite, limestone and basalt slopes from western Grand Canyon to Grand Wash Cliffs, Coconino and Mohave cos.; 400–1425 m (1310–4675 ft); Feb.-Apr.; n Son., Mex.

In Arizona, Hesperoyucca newberryi plants are distributed only in the Grand Canyon, from near Fern Glen Canyon at about Colorado River mile 168 (km 270), downriver to Grand Wash Cliffs at Colorado River mile 276 (km 444; miles measured from Lees Ferry), a distance of 108 miles (174 km); Southwest Environmental Network 2022). Although H. newberryi plants were reported to be restricted to the southern bank of the Colorado River and to below the rim of the Canyon (McKelvey 1947; Kearney and Peebles 1960), plants occur on both sides of the river and on the rims. However, populations appear to be two to three times greater in number on N, NE and NW-facing slopes (Hodgson, pers. obs.).

A disjunct population from the Arizona plants occurs ca. 275 miles to the south in Sonora, Mexico, near the Arizona-Mexico border in the Sierra del Viejo (Sierra Los Alacranes) on north-facing granitic rocky slopes (Felger 85-719, ASU). These plants were previously referred to as Hesperoyuccca whipplei (Torr.) Baker (Felger 2000; Clary 2001). However, recent fieldwork, collections (Hodgson et al. 32502, 32503, 32504, DES) and molecular data (Salywon, unpublished data) clearly place the Sonoran plants in H. newberryi (see Clary 2001 for key to the species). This disjunct distribution may be a result of Pleistocene interglacial episodes that fragmented and reduced populations that were formerly widespread in the Sonoran Desert (Van Devender 1990; see Segraves and Pellmyr 2001). Surviving populations occur mainly in Grand Canyon, which served as a Pleistocene refugia.

Pre-contact peoples may also have affected H. newberryi populations. Hesperoyucca sp. is documented from the Tinajas Altas, where the plants previously occurred at least 11,000 – 18,700 years ago based on leaf fragments in packrat middens (Van Devender 1990; Felger 2007; Felger et al. 2012). The tinajas in the Tinajas Altas provided water resources to not only bighorn sheep but people, the latter arriving here during the Paleo-indian Period that extends from 11,000 BCE or earlier to 8000 BCE (Felger et al. 2012). The nearby extant Sonoran plants may represent a relictual population that survived exploitation for food by bighorn sheep and possibly people whose habitation in the Sierra del Viejo (Sierra Los Alacranes) was discouraged because of the area’s extreme aridity and lack of fresh water sources (Felger 2007; Felger et al. 2012).

Several indigenous groups used Hesperoyuccca whipplei for food (stem, flower stalk, flowers, seeds), fiber (leaves) and soap (roots) (Parish 1891, cited in McKelvey 1947; Dodge 1897; Weiss 1994; Miegs 1939; Zigmond 1981; Hodgson 2001; Hope-King 2006; Wilken-Robertson 2017; Anderson and Keeley 2018). There is little, if any, documentation on H. newberryi uses. Hope-King (2006) cites use of Hesperoyuccca by Yavapai, Zuni, Navajo and Hopi tribes; however, this is misleading as publications cited refer to their use of yuccas in the general sense, rather than Hesperoyuccca specifically. There is little doubt that indigenous peoples that had access to H. newberryi either through direct harvest or via trade, used the plants in similar ways as other indigenous groups used H. whipplei.

ACKNOWLEDGEMENTS

We are grateful to the curators of ARIZ, ASC, ASU, and DES for kindly providing use of their specimens. We thank the Desert Botanical Garden for providing funding to support field and herbarium work for this project. We also thank Grand Canyon National Park staff,
past and present, and Hualapai Nation for allowing the authors to travel down river and document *Hesperoyucca* specimens on Park and tribal land, respectively. We are especially grateful to Lori Makarick, Kate Watters, Amy Prince, Melissa McMaster, and Ronda Newton of GCNP. We are also especially grateful to Carrie Cannon, Gary Gonzalez, Shailene Gonzalez, Dwayne Parker, Alicia "Tiny" Cesspooch, Vincent Diaz, and others of Hualapai Nation who enthusiastically assisted in collecting specimens, counting individuals observed while traveling downriver, and demonstrating uses of *H. newberryi* plants. Special thanks also to Arthur Phillips III and Barbara Phillips who assisted in early river forays and Karen H. Clary for her generously offered thoughtful insights and help with the manuscript. We also thank Les Landrum for his comments that helped improve the manuscript and Michael Fickes for the closeup seed photo.

LITERATURE CITED

HODGSON, W. 2001. *Food Plants of the Sonoran Desert.* University of Arizona Press, Tucson.

MCKELVEY, S. 1947. *Yuccas of the Southwestern United States, Part 2.* Arnold Arboretum, Jamaica Plain, MA.

VAN DEVENDER, T. 1990. Pg. 134–165. *Late Quaternary vegetation and climate of the Sonoran Desert, United States and Mexico.* In J. Betancourt, T. Van Devender, and P.
Martin (Eds.). Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson.

Agavaceae part 2: Hesperoyucca. Figure 1. Distribution of H. newberryi in Arizona.
Agavaceae part 2: *Hesperoyucca*. Figure 3. *H. newberryi*. A. Close-up of the flower showing the stamens and the ovary with the capitate and fringed stigma (*Hodgson 24578 et al., DES*). B. Infructescence (*Hodgson 32060 et al. DES*). C. Seeds (*Hodgson et al. 32073, DES; scale bar 1 cm). D. Mature fruit with inconspicuous placental wings (*Hodgson 32072 et al., DES*). Photos credits: A, B, D. Wendy Hodgson; C. Michael Fickes.
Agavaceae part 2: Hesperoyucca. Figure 4. *H. newberryi*. A. Typical habitat of steep, rocky slopes with most individuals appearing to occur on north- or northeast facing slopes. The flowering individuals are often few and far between; note the arrow pointing to a person next to a plant in the background. B. Although its uses are not well documented, leaf fibers soaked in water form a soapy liquid and can be braided. C. Vincent Diaz washing his hair with soapy water from leaves soaked in water. Photos by Wendy Hodgson.